2000 character limit reached
Multiple Lattice Tilings in Euclidean Spaces (1710.05506v3)
Published 16 Oct 2017 in math.MG
Abstract: This paper proves the following results: Besides parallelograms and centrally symmetric hexagons, there is no other convex domain which can form a two-, three- or four-fold lattice tiling in the Euclidean plane. If a centrally symmetric octagon can form a lattice multiple tiling, then the multiplicity is at least seven. However, there are decagons which can form five-fold $($or six-fold$)$ lattice tilings. Consequently, whenever $n\ge 3$, there are non-parallelohedral polytopes which can form five-fold lattice tilings in the $n$-dimensional Euclidean space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.