Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GOE statistics for Anderson models on antitrees and thin boxes in $\mathbb{Z}^3$ with deformed Laplacian (1710.05253v3)

Published 15 Oct 2017 in math-ph, math.MP, math.PR, and math.SP

Abstract: Sequences of certain finite graphs, antitrees, are constructed along which the Anderson model shows GOE statistics, i.e. a re-scaled eigenvalue process converges to the ${\rm Sine}_1$ process. The Anderson model on the graph is a random matrix being the sum of the adjacency matrix and a random diagonal matrix with independent identically distributed entries along the diagonal. The strength of the randomness stays fixed, there is no re-scaling with matrix size. These considered random matrices giving GOE statistics can also be viewed as random Schr\"odinger operators $\mathcal{P}\Delta+\mathcal{V}$ on thin finite boxes in $\mathbb{Z}3$ where the Laplacian $\Delta$ is deformed by a projection $\mathcal{P}$ commuting with $\Delta$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.