Papers
Topics
Authors
Recent
Search
2000 character limit reached

Co-saliency Detection for RGBD Images Based on Multi-constraint Feature Matching and Cross Label Propagation

Published 14 Oct 2017 in cs.CV | (1710.05172v1)

Abstract: Co-saliency detection aims at extracting the common salient regions from an image group containing two or more relevant images. It is a newly emerging topic in computer vision community. Different from the most existing co-saliency methods focusing on RGB images, this paper proposes a novel co-saliency detection model for RGBD images, which utilizes the depth information to enhance identification of co-saliency. First, the intra saliency map for each image is generated by the single image saliency model, while the inter saliency map is calculated based on the multi-constraint feature matching, which represents the constraint relationship among multiple images. Then, the optimization scheme, namely Cross Label Propagation (CLP), is used to refine the intra and inter saliency maps in a cross way. Finally, all the original and optimized saliency maps are integrated to generate the final co-saliency result. The proposed method introduces the depth information and multi-constraint feature matching to improve the performance of co-saliency detection. Moreover, the proposed method can effectively exploit any existing single image saliency model to work well in co-saliency scenarios. Experiments on two RGBD co-saliency datasets demonstrate the effectiveness of our proposed model.

Citations (109)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.