On free Generalized Inverse Gaussian distributions (1710.04572v1)
Abstract: We study here properties of free Generalized Inverse Gaussian distributions (fGIG) in free probability. We show that in many cases the fGIG shares similar properties with the classical GIG distribution. In particular we prove that fGIG is freely infinitely divisible, free regular and unimodal, and moreover we determine which distributions in this class are freely selfdecomposable. In the second part of the paper we prove that for free random variables $X,Y$ where $Y$ has a free Poisson distribution one has $X\stackrel{d}{=}\frac{1}{X+Y}$ if and only if $X$ has fGIG distribution for special choice of parameters. We also point out that the free GIG distribution maximizes the same free entropy functional as the classical GIG does for the classical entropy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.