Supersaturated sparse graphs and hypergraphs (1710.04517v1)
Abstract: A central problem in extremal graph theory is to estimate, for a given graph $H$, the number of $H$-free graphs on a given set of $n$ vertices. In the case when $H$ is not bipartite, fairly precise estimates on this number are known. In particular, thirty years ago, Erd\H{o}s, Frankl, and R\"odl proved that there are $2{(1+o(1))\text{ex}(n,H)}$ such graphs. In the bipartite case, however, nontrivial bounds have been proven only for relatively few special graphs $H$. We make a first attempt at addressing this enumeration problem for a general bipartite graph $H$. We show that an upper bound of $2{O(\text{ex}(n,H))}$ on the number of $H$-free graphs with $n$ vertices follows merely from a rather natural assumption on the growth rate of $n \mapsto \text{ex}(n,H)$; an analogous statement remains true when $H$ is a uniform hypergraph. Subsequently, we derive several new results, along with most previously known estimates, as simple corollaries of our theorem. At the heart of our proof lies a general supersaturation statement that extends the seminal work of Erd\H{o}s and Simonovits. The bounds on the number of $H$-free hypergraphs are derived from it using the method of hypergraph containers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.