Papers
Topics
Authors
Recent
2000 character limit reached

A High Frequency Trade Execution Model for Supervised Learning (1710.03870v3)

Published 11 Oct 2017 in q-fin.TR

Abstract: This paper introduces a high frequency trade execution model to evaluate the economic impact of supervised machine learners. Extending the concept of a confusion matrix, we present a 'trade information matrix' to attribute the expected profit and loss of the high frequency strategy under execution constraints, such as fill probabilities and position dependent trade rules, to correct and incorrect predictions. We apply the trade execution model and trade information matrix to Level II E-mini S&P 500 futures history and demonstrate an estimation approach for measuring the sensitivity of the P&L to the error of a Recurrent Neural Network. Our approach directly evaluates the performance sensitivity of a market making strategy to prediction error and augments traditional market simulation based testing.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.