2000 character limit reached
Counterexamples for percolation on unimodular random graphs (1710.03003v1)
Published 9 Oct 2017 in math.PR
Abstract: We construct an example of a bounded degree, nonamenable, unimodular random rooted graph with $p_c=p_u$ for Bernoulli bond percolation, as well as an example of a bounded degree, unimodular random rooted graph with $p_c<1$ but with an infinite cluster at criticality. These examples show that two well-known conjectures of Benjamini and Schramm are false when generalised from transitive graphs to unimodular random rooted graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.