Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Language Hierarchy and Kitchens-Type Theorem for Self-Similar Groups (1710.02886v2)

Published 8 Oct 2017 in math.GR

Abstract: We generalize the notion of self-similar groups of infinite tree automorphisms to allow for groups which are defined on a tree but do not act faithfully on it. The elements of such a group correspond to labeled trees which may be recognized by a tree automaton (e.g. Rabin, B\"{u}chi, etc.), or considered as elements of a tree shift (e.g. of finite type, sofic) as in symbolic dynamics. We give examples to show that the various classes of self-similar groups defined in this way do not coincide. As the main result, extending the classical result of Kitchens on one-dimensional group shifts, we provide a sufficient condition for a self-similar group whose elements form a sofic tree shift to be a tree shift of finite type. As an application, we show that the closure of certain self-similar groups of tree automorphisms are not Rabin-recognizable. \end{abstract}

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.