Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unstable Entropies and Variational Principle for Partially Hyperbolic Diffeomorphisms (1710.02809v1)

Published 8 Oct 2017 in math.DS

Abstract: We study entropies caused by the unstable part of partially hyperbolic systems. We define unstable metric entropy and unstable topological entropy, and establish a variational principle for partially hyperbolic diffeomorphsims, which states that the unstable topological entropy is the supremum of the unstable metric entropy taken over all invariant measures. The unstable metric entropy for an invariant measure is defined as a conditional entropy along unstable manifolds, and it turns out to be the same as that given by Ledrappier-Young, though we do not use increasing partitions. The unstable topological entropy is defined equivalently via separated sets, spanning sets and open covers along a piece of unstable leaf, and it coincides with the unstable volume growth along unstable foliation. We also obtain some properties for the unstable metric entropy such as affineness, upper semi-continuity and a version of Shannon-McMillan-Breiman theorem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.