Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dense Initialization for Limited-Memory Quasi-Newton Methods (1710.02396v5)

Published 6 Oct 2017 in math.OC

Abstract: We consider a family of dense initializations for limited-memory quasi-Newton methods. The proposed initialization exploits an eigendecomposition-based separation of the full space into two complementary subspaces, assigning a different initialization parameter to each subspace. This family of dense initializations is proposed in the context of a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) trust-region method that makes use of a shape-changing norm to define each subproblem. As with L-BFGS methods that traditionally use diagonal initialization, the dense initialization and the sequence of generated quasi-Newton matrices are never explicitly formed. Numerical experiments on the CUTEst test set suggest that this initialization together with the shape-changing trust-region method outperforms other L-BFGS methods for solving general nonconvex unconstrained optimization problems. While this dense initialization is proposed in the context of a special trust-region method, it has broad applications for more general quasi-Newton trust-region and line search methods. In fact, this initialization is suitable for use with any quasi-Newton update that admits a compact representation and, in particular, any member of the Broyden class of updates.

Summary

We haven't generated a summary for this paper yet.