Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regularization of Limited Memory Quasi-Newton Methods for Large-Scale Nonconvex Minimization

Published 11 Nov 2019 in math.OC, cs.NA, and math.NA | (1911.04584v4)

Abstract: This paper deals with regularized Newton methods, a flexible class of unconstrained optimization algorithms that is competitive with line search and trust region methods and potentially combines attractive elements of both. The particular focus is on combining regularization with limited memory quasi-Newton methods by exploiting the special structure of limited memory algorithms. Global convergence of regularization methods is shown under mild assumptions and the details of regularized limited memory quasi-Newton updates are discussed including their compact representations. Numerical results using all large-scale test problems from the CUTEst collection indicate that our regularized version of L-BFGS is competitive with state-of-the-art line search and trust-region L-BFGS algorithms and previous attempts at combining L-BFGS with regularization, while potentially outperforming some of them, especially when nonmonotonicity is involved.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.