Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shape-Changing Trust-Region Methods Using Multipoint Symmetric Secant Matrices (2209.12057v2)

Published 24 Sep 2022 in math.OC

Abstract: In this work, we consider methods for large-scale and nonconvex unconstrained optimization. We propose a new trust-region method whose subproblem is defined using a so-called "shape-changing" norm together with densely-initialized multipoint symmetric secant (MSS) matrices to approximate the Hessian. Shape-changing norms and dense initializations have been successfully used in the context of traditional quasi-Newton methods, but have yet to be explored in the case of MSS methods. Numerical results suggest that trust-region methods that use densely-initialized MSS matrices together with shape-changing norms outperform MSS with other trust-region methods.

Summary

We haven't generated a summary for this paper yet.