Rényi Differential Privacy Mechanisms for Posterior Sampling (1710.00892v1)
Abstract: Using a recently proposed privacy definition of R\'enyi Differential Privacy (RDP), we re-examine the inherent privacy of releasing a single sample from a posterior distribution. We exploit the impact of the prior distribution in mitigating the influence of individual data points. In particular, we focus on sampling from an exponential family and specific generalized linear models, such as logistic regression. We propose novel RDP mechanisms as well as offering a new RDP analysis for an existing method in order to add value to the RDP framework. Each method is capable of achieving arbitrary RDP privacy guarantees, and we offer experimental results of their efficacy.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.