Papers
Topics
Authors
Recent
Search
2000 character limit reached

Square-Contact Representations of Partial 2-Trees and Triconnected Simply-Nested Graphs

Published 1 Oct 2017 in cs.CG | (1710.00426v1)

Abstract: A square-contact representation of a planar graph $G=(V,E)$ maps vertices in $V$ to interior-disjoint axis-aligned squares in the plane and edges in $E$ to adjacencies between the sides of the corresponding squares. In this paper, we study proper square-contact representations of planar graphs, in which any two squares are either disjoint or share infinitely many points. We characterize the partial $2$-trees and the triconnected cycle-trees allowing for such representations. For partial $2$-trees our characterization uses a simple forbidden subgraph whose structure forces a separating triangle in any embedding. For the triconnected cycle-trees, a subclass of the triconnected simply-nested graphs, we use a new structural decomposition for the graphs in this family, which may be of independent interest. Finally, we study square-contact representations of general triconnected simply-nested graphs with respect to their outerplanarity index.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.