Papers
Topics
Authors
Recent
Search
2000 character limit reached

Application of a Hybrid Bi-LSTM-CRF model to the task of Russian Named Entity Recognition

Published 27 Sep 2017 in cs.CL | (1709.09686v2)

Abstract: Named Entity Recognition (NER) is one of the most common tasks of the natural language processing. The purpose of NER is to find and classify tokens in text documents into predefined categories called tags, such as person names, quantity expressions, percentage expressions, names of locations, organizations, as well as expression of time, currency and others. Although there is a number of approaches have been proposed for this task in Russian language, it still has a substantial potential for the better solutions. In this work, we studied several deep neural network models starting from vanilla Bi-directional Long Short-Term Memory (Bi-LSTM) then supplementing it with Conditional Random Fields (CRF) as well as highway networks and finally adding external word embeddings. All models were evaluated across three datasets: Gareev's dataset, Person-1000, FactRuEval-2016. We found that extension of Bi-LSTM model with CRF significantly increased the quality of predictions. Encoding input tokens with external word embeddings reduced training time and allowed to achieve state of the art for the Russian NER task.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.