Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Stability Conditions Under the Fourier-Mukai Transforms on Abelian Threefolds (1709.09351v1)

Published 27 Sep 2017 in math.AG

Abstract: We realize explicit symmetries of Bridgeland stability conditions on any abelian threefold given by Fourier-Mukai transforms. In particular, we extend the previous joint work with Maciocia to study the slope and tilt stabilities of sheaves and complexes under the Fourier-Mukai transforms, and then to show that certain Fourier-Mukai transforms give equivalences of the stability condition hearts of bounded t-structures which are double tilts of coherent sheaves. Consequently, we show that the conjectural construction proposed by Bayer, Macri and Toda gives rise to Bridgeland stability conditions on any abelian threefold by proving that tilt stable objects satisfy the Bogomolov-Gieseker type inequality. Our proof of the Bogomolov-Gieseker type inequality conjecture for any abelian threefold is a generalization of the previous joint work with Maciocia for a principally polarized abelian threefold with Picard rank one case, and also this gives an alternative proof of the same result in full generality due to Bayer, Macri and Stellari. Moreover, we realize the induced cohomological Fourier-Mukai transform explicitly in anti-diagonal form, and consequently, we describe a polarization on the derived equivalent abelian variety by using Fourier-Mukai theory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.