A Hybrid Approach using Ontology Similarity and Fuzzy Logic for Semantic Question Answering (1709.09214v2)
Abstract: One of the challenges in information retrieval is providing accurate answers to a user's question often expressed as uncertainty words. Most answers are based on a Syntactic approach rather than a Semantic analysis of the query. In this paper, our objective is to present a hybrid approach for a Semantic question answering retrieval system using Ontology Similarity and Fuzzy logic. We use a Fuzzy Co-clustering algorithm to retrieve the collection of documents based on Ontology Similarity. The Fuzzy Scale uses Fuzzy type-1 for documents and Fuzzy type-2 for words to prioritize answers. The objective of this work is to provide retrieval system with more accurate answers than non-fuzzy Semantic Ontology approach.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.