Papers
Topics
Authors
Recent
2000 character limit reached

Global regularity for the 2D MHD equations with partial hyperresistivity (1709.09074v1)

Published 26 Sep 2017 in math.AP

Abstract: This paper establishes the global existence and regularity for a system of the two-dimensional (2D) magnetohydrodynamic (MHD) equations with only directional hyperresistivity. More precisely, the equation of $b_1$ (the horizontal component of the magnetic field) involves only vertical hyperdiffusion (given by $\Lambda_2{2\beta} b_1$) while the equation of $b_2$ (the vertical component) has only horizontal hyperdiffusion (given by $\Lambda_1{2\beta} b_2$), where $\Lambda_1$ and $\Lambda_2$ are directional Fourier multiplier operators with the symbols being $|\xi_1|$ and $|\xi_2|$, respectively. We prove that, for $\beta>1$, this system always possesses a unique global-in-time classical solution when the initial data is sufficiently smooth. The model concerned here is rooted in the MHD equations with only magnetic diffusion, which play a significant role in the study of magnetic reconnection and magnetic turbulence. In certain physical regimes and under suitable scaling, the magnetic diffusion becomes partial (given by part of the Laplacian operator). There have been considerable recent developments on the fundamental issue of whether classical solutions of these equations remain smooth for all time. The papers of Cao-Wu-Yuan \cite{CaoWuYuan} and of Jiu-Zhao \cite{JiuZhao2} obtained the global regularity when the magnetic diffusion is given by the full fractional Laplacian $(-\Delta)\beta$ with $\beta>1$. The main result presented in this paper requires only directional fractional diffusion and yet we prove the regularization in all directions. The proof makes use of a key observation on the structure of the nonlinearity in the MHD equations and technical tools on Fourier multiplier operators such as the H\"{o}rmander-Mikhlin multiplier theorem. The result presented here appears to be the sharpest for the 2D MHD equations with partial magnetic diffusion.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.