Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Two asymptotic approaches for the exponential signal and harmonic noise in Singular Spectrum Analysis (1709.08651v1)

Published 22 Sep 2017 in eess.SP and math.NA

Abstract: The general theoretical approach to the asymptotic extraction of the signal series from the perturbed signal with the help of Singular Spectrum Analysis (briefly, SSA) was already outlined in Nekrutkin 2010, SII, v. 3, 297--319. In this paper we consider the example of such an analysis applied to the increasing exponential signal and the sinusoidal noise. It is proved that if the signal rapidly tends to infinity, then the so-called reconstruction errors of SSA do not uniformly tend to zero as the series length tends to infinity. More precisely, in this case any finite number of last terms of the error series do not tend to any finite or infinite values. On the contrary, for the "discretization" scheme with the bounded from above exponential signal, all elements of the error series tend to zero. This effect shows that the discretization model can be an effective tool in the theoretical SSA considerations with increasing signals.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.