Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Discrete-time Optimization in Multi-agent Networks Using only Sign of Relative State (1709.08360v3)

Published 25 Sep 2017 in cs.SY

Abstract: This paper proposes distributed discrete-time algorithms to cooperatively solve an additive cost optimization problem in multi-agent networks. The striking feature lies in the use of only the sign of relative state information between neighbors, which substantially differentiates our algorithms from others in the existing literature. We first interpret the proposed algorithms in terms of the penalty method in optimization theory and then perform non-asymptotic analysis to study convergence for static network graphs. Compared with the celebrated distributed subgradient algorithms, which however use the exact relative state information, the convergence speed is essentially not affected by the loss of information. We also study how introducing noise into the relative state information and randomly activated graphs affect the performance of our algorithms. Finally, we validate the theoretical results on a class of distributed quantile regression problems.

Citations (52)

Summary

We haven't generated a summary for this paper yet.