Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the weak tightness, Hausdorff spaces, and power homogeneous compacta (1709.07998v1)

Published 23 Sep 2017 in math.GN

Abstract: Motivated by results of Juh\'asz and van Mill in [13], we define the cardinal invariant $wt(X)$, the weak tightness of a topological space $X$, and show that $|X|\leq 2{L(X)wt(X)\psi(X)}$ for any Hausdorff space $X$ (Theorem 2.8). As $wt(X)\leq t(X)$ for any space $X$, this generalizes the well-known cardinal inequality $|X|\leq 2{L(X)t(X)\psi(X)}$ for Hausdorff spaces (Arhangel{\cprime}ski\u{i}~[1],\v{S}}apirovski\u{i}}~[18]) in a new direction. Theorem 2.8 is generalized further using covers by $G_\kappa$-sets, where $\kappa$ is a cardinal, to show that if $X$ is a power homogeneous compactum with a countable cover of dense, countably tight subspaces then $|X|\leq\mathfrak{c}$, the cardinality of the continuum. This extends a result in [13] to the power homogeneous setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.