Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Restrictions of Heterotic $G_2$ Structures and Instanton Connections (1709.06974v1)

Published 20 Sep 2017 in math.DG and hep-th

Abstract: This note revisits recent results regarding the geometry and moduli of solutions of the heterotic string on manifolds $Y$ with a $G_2$ structure. In particular, such heterotic $G_2$ systems can be rephrased in terms of a differential $\check {\cal D}$ acting on a complex $\check\Omega*(Y , {\cal Q})$, where ${\cal Q}=T*Y\oplus{\rm End}(TY)\oplus{\rm End}(V)$ and $\check {\cal D}$ is an appropriate projection of an exterior covariant derivative ${\cal D}$ which satisfies an instanton condition. The infinitesimal moduli are further parametrised by the first cohomology $H1_{\check {\cal D}}(Y,{\cal Q})$. We proceed to restrict this system to manifolds $X$ with an $SU(3)$ structure corresponding to supersymmetric compactifications to four dimensional Minkowski space, often referred to as Strominger--Hull solutions. In doing so, we derive a new result: the Strominger-Hull system is equivalent to a particular holomorphic Yang-Mills covariant derivative on ${\cal Q}\vert_X=T*X\oplus{\rm End}(TX)\oplus{\rm End}(V)$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube