Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dead Alphas as Risk Factors (1709.06641v1)

Published 19 Sep 2017 in q-fin.PM and q-fin.RM

Abstract: We give an explicit algorithm and source code for extracting equity risk factors from dead (a.k.a. "flatlined" or "hockey-stick") alphas and using them to improve performance characteristics of good (tradable) alphas. In a nutshell, we use dead alphas to extract directions in the space of stock returns along which there is no money to be made (and/or those bets are too volatile). In practice the number of dead alphas can be large compared with the number of underlying stocks and care is required in identifying the aforesaid directions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube