Quantum Entanglement of the Sachdev-Ye-Kitaev Models (1709.06259v3)
Abstract: The Sachdev-Ye-Kitaev (SYK) model is a quantum mechanical model of fermions interacting with $q$-body random couplings. For $q=2$, it describes free particles, and is non-chaotic in the many-body sense, while for $q>2$ it is strongly interacting and exhibits many-body chaos. In this work we study the entanglement entropy (EE) of the SYK$q$ models, for a bipartition of $N$ real or complex fermions into subsystems containing $2m$ real/$m$ complex fermions and $N-2m$/$N-m$ fermions in the remainder. For the free model SYK$2$, we obtain an analytic expression for the EE, derived from the $\beta$-Jacobi random matrix ensemble. Furthermore, we use the replica trick and path integral formalism to show that the EE is {\em maximal} for when one subsystem is small, i.e. $m\ll N$, for {\em arbitrary} $q$. We also demonstrate that the EE for the SYK4 model is noticeably smaller than the Page value when the two subsystems are comparable in size, i.e. $m/N$ is $O(1)$. Finally, we explore the EE for a model with both SYK2 and SYK4 interaction and find a crossover from SYK2 (low temperature) to SYK4 (high temperature) behavior as we vary energy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.