Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human Understandable Explanation Extraction for Black-box Classification Models Based on Matrix Factorization (1709.06201v1)

Published 18 Sep 2017 in cs.AI, cs.LG, and stat.ML

Abstract: In recent years, a number of artificial intelligent services have been developed such as defect detection system or diagnosis system for customer services. Unfortunately, the core in these services is a black-box in which human cannot understand the underlying decision making logic, even though the inspection of the logic is crucial before launching a commercial service. Our goal in this paper is to propose an analytic method of a model explanation that is applicable to general classification models. To this end, we introduce the concept of a contribution matrix and an explanation embedding in a constraint space by using a matrix factorization. We extract a rule-like model explanation from the contribution matrix with the help of the nonnegative matrix factorization. To validate our method, the experiment results provide with open datasets as well as an industry dataset of a LTE network diagnosis and the results show our method extracts reasonable explanations.

Citations (8)

Summary

We haven't generated a summary for this paper yet.