Papers
Topics
Authors
Recent
2000 character limit reached

Total Edge Irregularity Strength for Graphs (1709.04613v2)

Published 14 Sep 2017 in math.CO

Abstract: An edge irregular total $k$-labelling $f : V(G)\cup E(G)\rightarrow {1,2,\dots,k}$ of a graph $G$ is a labelling of the vertices and the edges of $G$ in such a way that any two different edges have distinct weights. The weight of an edge $e$, denoted by $wt(e)$, is defined as the sum of the label of $e$ and the labels of two vertices which incident with $e$, i.e. if $e=vw$, then $wt(e)=f(e)+f(v)+f(w)$. The minimum $k$ for which $G$ has an edge irregular total $k$-labelling is called the total edge irregularity strength of $G.$ In this paper, we determine total edge irregularity of connected and disconnected graphs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.