Papers
Topics
Authors
Recent
2000 character limit reached

Model Selection Confidence Sets by Likelihood Ratio Testing (1709.04342v1)

Published 13 Sep 2017 in stat.ME, math.ST, and stat.TH

Abstract: The traditional activity of model selection aims at discovering a single model superior to other candidate models. In the presence of pronounced noise, however, multiple models are often found to explain the same data equally well. To resolve this model selection ambiguity, we introduce the general approach of model selection confidence sets (MSCSs) based on likelihood ratio testing. A MSCS is defined as a list of models statistically indistinguishable from the true model at a user-specified level of confidence, which extends the familiar notion of confidence intervals to the model-selection framework. Our approach guarantees asymptotically correct coverage probability of the true model when both sample size and model dimension increase. We derive conditions under which the MSCS contains all the relevant information about the true model structure. In addition, we propose natural statistics based on the MSCS to measure importance of variables in a principled way that accounts for the overall model uncertainty. When the space of feasible models is large, MSCS is implemented by an adaptive stochastic search algorithm which samples MSCS models with high probability. The MSCS methodology is illustrated through numerical experiments on synthetic data and real data examples.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.