Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 25 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Online Learning in Weakly Coupled Markov Decision Processes: A Convergence Time Study (1709.03465v1)

Published 11 Sep 2017 in math.OC

Abstract: We consider multiple parallel Markov decision processes (MDPs) coupled by global constraints, where the time varying objective and constraint functions can only be observed after the decision is made. Special attention is given to how well the decision maker can perform in $T$ slots, starting from any state, compared to the best feasible randomized stationary policy in hindsight. We develop a new distributed online algorithm where each MDP makes its own decision each slot after observing a multiplier computed from past information. While the scenario is significantly more challenging than the classical online learning context, the algorithm is shown to have a tight $O(\sqrt{T})$ regret and constraint violations simultaneously. To obtain such a bound, we combine several new ingredients including ergodicity and mixing time bound in weakly coupled MDPs, a new regret analysis for online constrained optimization, a drift analysis for queue processes, and a perturbation analysis based on Farkas' Lemma.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.