A Simple Analysis for Exp-concave Empirical Minimization with Arbitrary Convex Regularizer (1709.02909v1)
Abstract: In this paper, we present a simple analysis of {\bf fast rates} with {\it high probability} of {\bf empirical minimization} for {\it stochastic composite optimization} over a finite-dimensional bounded convex set with exponential concave loss functions and an arbitrary convex regularization. To the best of our knowledge, this result is the first of its kind. As a byproduct, we can directly obtain the fast rate with {\it high probability} for exponential concave empirical risk minimization with and without any convex regularization, which not only extends existing results of empirical risk minimization but also provides a unified framework for analyzing exponential concave empirical risk minimization with and without {\it any} convex regularization. Our proof is very simple only exploiting the covering number of a finite-dimensional bounded set and a concentration inequality of random vectors.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.