Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-based Evolutionary Multi-Objective Optimisation (1709.02679v1)

Published 8 Sep 2017 in cs.NE

Abstract: The quality of solution sets generated by decomposition-based evolutionary multiobjective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often lead to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this paper, we propose an approach to adapt the weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating five parts in the weight adaptation --- weight generation, weight addition, weight deletion, archive maintenance, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerated, 6) the badly-scaled, and 7) the high-dimensional.

Citations (126)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.