On the Lagrangian branched transport model and the equivalence with its Eulerian formulation (1709.01414v1)
Abstract: First we present two classical models of Branched Transport: the Lagrangian model introduced by Bernot, Caselles, Morel, Maddalena, Solimini, and the Eulerian model introduced by Xia. An emphasis is put on the Lagrangian model, for which we give a complete proof of existence of minimizers in a --hopefully-- simplified manner. We also treat in detail some $\sigma$-finiteness and rectifiability issues to yield rigorously the energy formula connecting the irrigation cost I$\alpha$ to the Gilbert Energy E$\alpha$. Our main purpose is to use this energy formula and exploit a Smirnov decomposition of vector flows, which was proved via the Dacorogna-Moser approach by Santambrogio, to establish the equivalence between the Lagrangian and Eulerian models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.