Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On a randomized backward Euler method for nonlinear evolution equations with time-irregular coefficients (1709.01018v2)

Published 4 Sep 2017 in math.NA

Abstract: In this paper we introduce a randomized version of the backward Euler method, that is applicable to stiff ordinary differential equations and nonlinear evolution equations with time-irregular coefficients. In the finite-dimensional case, we consider Carath\'eodory type functions satisfying a one-sided Lipschitz condition. After investigating the well-posedness and the stability properties of the randomized scheme, we prove the convergence to the exact solution with a rate of $0.5$ in the root-mean-square norm assuming only that the coefficient function is square integrable with respect to the temporal parameter. These results are then extended to the numerical solution of infinite-dimensional evolution equations under monotonicity and Lipschitz conditions. Here we consider a combination of the randomized backward Euler scheme with a Galerkin finite element method. We obtain error estimates that correspond to the regularity of the exact solution. The practicability of the randomized scheme is also illustrated through several numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube