Papers
Topics
Authors
Recent
2000 character limit reached

Why optional stopping can be a problem for Bayesians

Published 28 Aug 2017 in stat.ME, math.ST, and stat.TH | (1708.08278v5)

Abstract: Recently, optional stopping has been a subject of debate in the Bayesian psychology community. Rouder (2014) argues that optional stopping is no problem for Bayesians, and even recommends the use of optional stopping in practice, as do Wagenmakers et al. (2012). This article addresses the question whether optional stopping is problematic for Bayesian methods, and specifies under which circumstances and in which sense it is and is not. By slightly varying and extending Rouder's (2014) experiments, we illustrate that, as soon as the parameters of interest are equipped with default or pragmatic priors - which means, in most practical applications of Bayes factor hypothesis testing - resilience to optional stopping can break down. We distinguish between three types of default priors, each having their own specific issues with optional stopping, ranging from no-problem-at-all (Type 0 priors) to quite severe (Type II priors).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.