Twisted logarithmic modules of lattice vertex algebras (1708.08172v3)
Abstract: Twisted modules over vertex algebras formalize the relations among twisted vertex operators and have applications to conformal field theory and representation theory. A recent generalization, called twisted logarithmic module, involves the logarithm of the formal variable and is related to logarithmic conformal field theory. We investigate twisted logarithmic modules of lattice vertex algebras, reducing their classification to the classification of modules over a certain group. This group is a semidirect product of a discrete Heisenberg group and a central extension of the additive group of the lattice.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.