Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Faster Clustering via Non-Backtracking Random Walks (1708.07967v1)

Published 26 Aug 2017 in stat.ML, cs.LG, and cs.SI

Abstract: This paper presents VEC-NBT, a variation on the unsupervised graph clustering technique VEC, which improves upon the performance of the original algorithm significantly for sparse graphs. VEC employs a novel application of the state-of-the-art word2vec model to embed a graph in Euclidean space via random walks on the nodes of the graph. In VEC-NBT, we modify the original algorithm to use a non-backtracking random walk instead of the normal backtracking random walk used in VEC. We introduce a modification to a non-backtracking random walk, which we call a begrudgingly-backtracking random walk, and show empirically that using this model of random walks for VEC-NBT requires shorter walks on the graph to obtain results with comparable or greater accuracy than VEC, especially for sparser graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.