Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stratifying multiparameter persistent homology (1708.07390v2)

Published 24 Aug 2017 in math.AT and math.AC

Abstract: A fundamental tool in topological data analysis is persistent homology, which allows extraction of information from complex datasets in a robust way. Persistent homology assigns a module over a principal ideal domain to a one-parameter family of spaces obtained from the data. In applications data often depend on several parameters, and in this case one is interested in studying the persistent homology of a multiparameter family of spaces associated to the data. While the theory of persistent homology for one-parameter families is well-understood, the situation for multiparameter families is more delicate. Following Carlsson and Zomorodian we recast the problem in the setting of multigraded algebra, and we propose multigraded Hilbert series, multigraded associated primes and local cohomology as invariants for studying multiparameter persistent homology. Multigraded associated primes provide a stratification of the region where a multigraded module does not vanish, while multigraded Hilbert series and local cohomology give a measure of the size of components of the module supported on different strata. These invariants generalize in a suitable sense the invariant for the one-parameter case.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube