Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Divide-and-Conquer Checkpointing for Arbitrary Programs with No User Annotation (1708.06799v2)

Published 22 Aug 2017 in cs.PL

Abstract: Classical reverse-mode automatic differentiation (AD) imposes only a small constant-factor overhead in operation count over the original computation, but has storage requirements that grow, in the worst case, in proportion to the time consumed by the original computation. This storage blowup can be ameliorated by checkpointing, a process that reorders application of classical reverse-mode AD over an execution interval to tradeoff space \vs\ time. Application of checkpointing in a divide-and-conquer fashion to strategically chosen nested execution intervals can break classical reverse-mode AD into stages which can reduce the worst-case growth in storage from linear to sublinear. Doing this has been fully automated only for computations of particularly simple form, with checkpoints spanning execution intervals resulting from a limited set of program constructs. Here we show how the technique can be automated for arbitrary computations. The essential innovation is to apply the technique at the level of the language implementation itself, thus allowing checkpoints to span any execution interval.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube