2000 character limit reached
Quantitative Runge Approximation and Inverse Problems (1708.06307v1)
Published 21 Aug 2017 in math.AP
Abstract: In this short note we provide a quantitative version of the classical Runge approximation property for second order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application we provide a new proof of the result from \cite{F07}, \cite{AK12} on stability for the Calder\'on problem with local data.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.