Papers
Topics
Authors
Recent
2000 character limit reached

Quantitative Approximation Properties for the Fractional Heat Equation (1708.06300v1)

Published 21 Aug 2017 in math.AP

Abstract: In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain \emph{qualitative} approximation results from \cite{DSV16}. Using propagation of smallness arguments, we then provide bounds on the \emph{cost} of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss generalizations of these results to a larger class of operators involving both local and nonlocal contributions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.