Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Matrix KP: tropical limit and Yang-Baxter maps (1708.05694v2)

Published 18 Aug 2017 in nlin.SI, math-ph, and math.MP

Abstract: We study soliton solutions of matrix Kadomtsev-Petviashvili (KP) equations in a tropical limit, in which their support at fixed time is a planar graph and polarizations are attached to its constituting lines. There is a subclass of "pure line soliton solutions" for which we find that, in this limit, the distribution of polarizations is fully determined by a Yang-Baxter map. For a vector KP equation, this map is given by an R-matrix, whereas it is a non-linear map in case of a more general matrix KP equation. We also consider the corresponding Korteweg-deVries (KdV) reduction. Furthermore, exploiting the fine structure of soliton interactions in the tropical limit, we obtain a new solution of the tetrahedron (or Zamolodchikov) equation. Moreover, a solution of the functional tetrahedron equation arises from the parameter-dependence of the vector KP R-matrix.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.