Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Polynomials, sign patterns and Descartes' rule of signs (1708.05530v1)

Published 18 Aug 2017 in math.CA

Abstract: By Descartes' rule of signs, a real degree $d$ polynomial $P$ with all nonvanishing coefficients, with $c$ sign changes and $p$ sign preservations in the sequence of its coefficients ($c+p=d$) has $pos\leq c$ positive and $neg\leq p$ negative roots, where $pos\equiv c($\, mod $2)$ and $neg\equiv p($\, mod $2)$. For $1\leq d\leq 3$, for every possible choice of the sequence of signs of coefficients of $P$ (called sign pattern) and for every pair $(pos, neg)$ satisfying these conditions there exists a polynomial $P$ with exactly $pos$ positive and exactly $neg$ negative roots (all of them simple). For $d\geq 4$ this is not so. It was observed that for $4\leq d\leq 10$, in all nonrealizable cases either $pos=0$ or $neg=0$. It was conjectured that this is the case for any $d\geq 4$. We show a counterexample to this conjecture for $d=11$. Namely, we prove that for the sign pattern $(+,-,-,-,-,-,+,+,+,+,+,-)$ and the pair $(1,8)$ there exists no polynomial with $1$ positive, $8$ negative simple roots and a complex conjugate pair.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.