On the number of principal components in high dimensions
Abstract: We consider the problem of how many components to retain in the application of principal component analysis when the dimension is much higher than the number of observations. To estimate the number of components, we propose to sequentially test skewness of the squared lengths of residual scores that are obtained by removing leading principal components. The residual lengths are asymptotically left-skewed if all principal components with diverging variances are removed, and right-skewed if not. The proposed estimator is shown to be consistent, performs well in high-dimensional simulation studies, and provides reasonable estimates in a number of real data examples.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.