Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptive Threshold Sampling (1708.04970v2)

Published 16 Aug 2017 in stat.ML and cs.LG

Abstract: Sampling is a fundamental problem in computer science and statistics. However, for a given task and stream, it is often not possible to choose good sampling probabilities in advance. We derive a general framework for adaptively changing the sampling probabilities via a collection of thresholds.In general, adaptive sampling procedures introduce dependence amongst the sampled points, making it difficult to compute expectations and ensure estimators are unbiased or consistent. Our framework address this issue and further shows when adaptive thresholds can be treated as if they were fixed thresholds which samples items independently. This makes our adaptive sampling schemes simple to apply as there is no need to create custom estimators for the sampling method. Using our framework, we derive new samplers that can address a broad range of new and existing problems including sampling with memory rather than sample size budgets, stratified samples, multiple objectives, distinct counting, and sliding windows. In particular, we design a sampling procedure for the top-K problem where, unlike in the heavy-hitter problem, the sketch size and sampling probabilities are adaptively chosen.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.