Papers
Topics
Authors
Recent
2000 character limit reached

Quantitative Invertibility and Approximation for the Truncated Hilbert and Riesz Transforms (1708.04285v1)

Published 14 Aug 2017 in math.AP

Abstract: In this article we derive quantitative uniqueness and approximation properties for (perturbations) of Riesz transforms. Seeking to provide robust arguments, we adopt a PDE point of view and realize our operators as harmonic extensions, which makes the problem accessible to PDE tools. In this context we then invoke quantitative propagation of smallness estimates in combination with qualitative Runge approximation results. These results can be viewed as quantifications of the approximation properties which have recently gained prominence in the context of nonlocal operators, c.f. [DSV14], [DSV16].

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.