Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A General Class of Multifractional Processes and Stock Price Informativeness (1708.04217v3)

Published 14 Aug 2017 in q-fin.MF, math.PR, and stat.AP

Abstract: We introduce a general class of stochastic processes driven by a multifractional Brownian motion (mBm) and study the estimation problems of their pointwise H\"older exponents (PHE) based on a new localized generalized quadratic variation approach (LGQV). By comparing our suggested approach with the other two existing benchmark estimation approaches (classic GQV and oscillation approach) through a simulation study, we show that our estimator has better performance in the case where the observed process is some unknown bivariate function of time and mBm. Such multifractional processes, whose PHEs are time-varying, can be used to model stock prices under various market conditions, that are both time-dependent and region-dependent. As an application to finance, an empirical study on modeling cross-listed stocks provides new evidence that the equity path's roughness varies via time and the stock price informativeness properties from global stock markets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.