Papers
Topics
Authors
Recent
2000 character limit reached

Banach spaces of almost universal complemented disposition

Published 8 Aug 2017 in math.FA | (1708.02431v3)

Abstract: We introduce and study the notion of space of almost universal complemented disposition (a.u.c.d.) as a generalization of Kadec space. We show that every Banach space with separable dual is isometrically contained as a $1$-complemented subspace of a separable a.u.c.d. space and that all a.u.c.d. spaces with $1$-FDD are isometric and contain isometric $1$-complemented copies of every separable Banach space with $1$-FDD. We then study spaces of universal complemented disposition (u.c.d.) and provide different constructions for such spaces. We also consider spaces of u.c.d. with respect to separable spaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.