On generalized Dold manifolds (1708.02418v2)
Abstract: Let $X$ be a smooth manifold with a (smooth) involution $\sigma:X\to X$ such that $Fix(\sigma)\ne \emptyset$. We call the space $P(m,X):=\mathbb{S}m\times X/!\sim$ where $(v,x)\sim (-v,\sigma(x))$ a generalized Dold manifold. When $X$ is an almost complex manifold and the differential $T\sigma: TX\to TX$ is conjugate complex linear on each fibre, we obtain a formula for the Stiefel-Whitney polynomial of $P(m,X)$ when $H1(X;\mathbb{Z}_2)=0$. We obtain results on stable parallelizability of $P(m,X)$ and a very general criterion for the (non) vanishing of the unoriented cobordism class $[P(m,X)]$ in terms of the corresponding properties for $X$. These results are applied to the case when $X$ is a complex flag manifold.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.