Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nodal Statistics of Planar Random Waves

Published 7 Aug 2017 in math.PR, math-ph, and math.MP | (1708.02281v2)

Abstract: We consider Berry's random planar wave model (1977) for a positive Laplace eigenvalue $E>0$, both in the real and complex case, and prove limit theorems for the nodal statistics associated with a smooth compact domain, in the high-energy limit ($E\to \infty$). Our main result is that both the nodal length (real case) and the number of nodal intersections (complex case) verify a Central Limit Theorem, which is in sharp contrast with the non-Gaussian behaviour observed for real and complex arithmetic random waves on the flat $2$-torus, see Marinucci et al. (2016) and Dalmao et al. (2016). Our findings can be naturally reformulated in terms of the nodal statistics of a single random wave restricted to a compact domain diverging to the whole plane. As such, they can be fruitfully combined with the recent results by Canzani and Hanin (2016), in order to show that, at any point of isotropic scaling and for energy levels diverging sufficently fast, the nodal length of any Gaussian pullback monochromatic wave verifies a central limit theorem with the same scaling as Berry's model. As a remarkable byproduct of our analysis, we rigorously confirm the asymptotic behaviour for the variances of the nodal length and of the number of nodal intersections of isotropic random waves, as derived in Berry (2002).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.