Papers
Topics
Authors
Recent
2000 character limit reached

Dipolar bright solitons and solitary vortices in a radial lattice

Published 7 Aug 2017 in cond-mat.quant-gas, nlin.PS, and physics.optics | (1708.02011v2)

Abstract: Stabilizing vortex solitons with high values of the topological charge, S, is a challenging issue in optics, studies of Bose-Einstein condensates (BECs) and other fields. To develop a new approach to the solution of this problem, we consider a two-dimensional dipolar BEC under the action of an axisymmetric radially periodic lattice potential, $V(r)\sim \cos (2r+\delta )$, with dipole moments polarized perpendicular to the system's plane, which gives rise to isotropic repulsive dipole-dipole interactions (DDIs). Two radial lattices are considered, with $\delta =0$ and $\pi $, i.e., a potential maximum or minimum at $r=0$, respectively. Families of vortex gapsoliton (GSs) with $S=1$ and $S\geq 2$, the latter ones often being unstable in other settings, are completely stable in the present system (at least, up to $S=11$), being trapped in different annular troughs of the radial potential. The vortex solitons with different $S$ may stably coexist in sufficiently far separated troughs. Fundamental GSs, with $S=0$, are found too. In the case of $\delta =0$, the fundamental solitons are ring-shaped modes, with a local minimum at $r=0.$At $\delta =\pi $, they place a density peak at the center.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.