Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Minimal surfaces and Schwarz lemma (1708.01848v2)

Published 6 Aug 2017 in math.CV

Abstract: We prove a sharp Schwarz type inequality for the Weierstrass- Enneper representation of the minimal surfaces. It states the following. If $F:\mathbf{D}\to \Sigma$ is a conformal harmonic parameterization of a minimal disk $\Sigma$, where $\mathbf{D}$ is the unit disk and $|\Sigma|=\pi R2$, then $|F_x(z)|(1-|z|2)\le R$. If for some $z$ the previous inequality is equality, then the surface is an affine disk, and $F$ is linear up to a M\"obius transformation of the unit disk.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.